Borrelia burgdorferi BmpA is a laminin-binding protein.

نویسندگان

  • Ashutosh Verma
  • Catherine A Brissette
  • Amy Bowman
  • Brian Stevenson
چکیده

The Borrelia burgdorferi BmpA outer surface protein plays a significant role in mammalian infection by the Lyme disease spirochete and is an important antigen for the serodiagnosis of human infection. B. burgdorferi adheres to host extracellular matrix components, including laminin. The results of our studies indicate that BmpA and its three paralogous proteins, BmpB, BmpC, and BmpD, all bind to mammalian laminin. BmpA did not bind mammalian type I or type IV collagens or fibronectin. BmpA-directed antibodies significantly inhibited the adherence of live B. burgdorferi to laminin. The laminin-binding domain of BmpA was mapped to the carboxy-terminal 80 amino acids. Solubilized collagen inhibited BmpA-laminin binding, suggesting interactions through the collagen-binding domains of laminin. These results, together with previous data, indicate that BmpA and its paralogs are targets for the development of preventative and curative therapies for Lyme disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneity of BmpA (P39) among European isolates of Borrelia burgdorferi sensu lato and influence of interspecies variability on serodiagnosis.

The molecular and antigenic variabilities of BmpA (P39) among European isolates of Borrelia burgdorferi were analyzed. The bmpA sequences of 12 isolates representing all three species of B. burgdorferi sensu lato pathogenic for humans were amplified by PCR, cloned, and sequenced. The BmpA protein of Borrelia garinii is heterogeneous, with an amino acid sequence identity ranging from 91 to 97%, ...

متن کامل

Identification of Two Epitopes on the Outer Surface Protein A of the Lyme Disease Spirochete Borrelia burgdorferi

A murine IgM monoclonal antibody (MA-2C6) with κ-light chains directed against an antigenic determinant of outer surface protein A (OspA) of the Lyme disease spirochete, Borreliaburgdorferi, is produced. This antibody could bind specifically to OspA antigen of several isolates of B. burgdorferi, but not to the non-Lyme disease bacteria such as T. pallidum and B. hermsii. Antibody MA-2C6 was pur...

متن کامل

Borrelia burgdorferi basic membrane proteins A and B participate in the genesis of Lyme arthritis

Lyme arthritis results from colonization of joints by Borrelia burgdorferi and the ensuing host response. Using gene array-based differential analysis of B. burgdorferi gene expression and quantitative reverse trancription-polymerase chain reaction, we identified two paralogous spirochete genes, bmpA and bmpB, that are preferentially up-regulated in mouse joints compared with other organs. Tran...

متن کامل

Expression and Purification of Recombinant Outer Surface Protein D of Borrelia burgdorferi

To carry out the immunological experiments on the serum of Multiple Sclerosis (MS) patients, based on a correlation between Borrelia burgdorferi infection and contracting MS autoimmune disease the outer surface protein D (OspD) of the bacterium was expressed and purified. A clone containing the OspD gene in pET11a expression vector under the control of T7 promoter was transformed to the bacteri...

متن کامل

NF-κB is a key modulator in the signaling pathway of Borrelia burgdorferi BmpA-induced inflammatory chemokines in murine microglia BV2 cells

Lyme disease, caused by the bacterial spirochete Borrelia burgdorferi, is a tick‑borne zoonosis. Lyme neuroborreliosis is a principal manifestation of Lyme disease and its pathogenesis remains incompletely understood. Recent studies have demonstrated that Borrelia burgdorferi lipoproteins caused similar inflammatory effects as exhibited in Lyme neuroborreliosis. Basic membrane protein A (BmpA) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 77 11  شماره 

صفحات  -

تاریخ انتشار 2009